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I Notation

I parameter of Pisson process

X eptimate of the parameter X

T time of operation of the detector on the stochastic process

STt rtime'to the Ith event

X, a random variable denoting elapsed time between events

I (i-1) and I

t a point in time, or an amount of elapsed time dopending on

I the context

F(t) inter-arrlival time distribution of input stochastic process

F 0 (t) inter-arrival time distribution of output stochastic process

Ip probability of an event

N(T) number of (Poisson) input events to detector in ('o,T)

IM(T) number of output events from detector in (o#T)

Z( I expectation of

var( variance of C I

9(s), (pO(s)) Laplace transform of input (output) Inter-arrival
distribution

I (go) mean of F(t), (F0 (t))

a ( co) variance of F(t), (FO(t))

I •asymptotic quantum efficiency of detector - the ratio of the

asymptotic variance of the estimate of X of the ideal

II detector to that of the detector model under consideration

a time interval of fixed or variable duration follovwig an

input event to the detector

0(i) the distribution function of v

I ( )* Laplace tronsform of C )

Iv



I
I1d a dead time interval following input event

It •a coincidence interval following input event

,J-ul,2, ... ,- the states through which an R-fold coincidenceJ counter must pass before registering an output event

SO the ground state (the most stable state) of a coincidence

counter and the state at t = 0

pj(t,T) the probability density that state is J at time t, and

has been for a time T and that state R has not occurred

in (o,t) and state at t = 0 is S

v fj(si) Laplace transform of pj(t,r)

p3 (t) probability that state at time t is J and that state

I R has not occurred in (o,t)

i (T) hazard function or conditional probability density of decay

at time T given surrival to time T

SHx (T) probability that at least one count is registered in time

interval (o,t)

H (t) = H(XT) for photographic detector without reciprocity failure

(this defines absence of reciprocity failure)

SQ "fractional utilization factor"-- an ambiguous notion
discussed in text

BR number of photons required to make a photographic grain
developable

SS the number of photographic grains involved in a photographic

detection problem - 8 is large but the grains are confined

U to a small area

= 4 (A.T,R) for a simple photographic detector without reciprocity

I failure

= (0.T,K(R)) j K(R) a (XT,R) for a composite photographic

II detector without reciprocity failure

K(R) the distribution of R in the grains of a given photogralphl

materialU



I

I u • .(,T,,r,R) < 6 (XT,R) for a photographic material with highu intensity reciprocity failure [XT - constant, X large]

C (X,T,,R) < (XT,R) for a photographic material vith low

I intensity reciprocity failure [XT = constant, X small]

TI that amount of time in (o,T) during wVich detector is not

I "deed".
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cimu IMS AND APPLICATIONS TO DEIUON IlMM,

1 by

Hans Zweig

I IINTRODUCTION AND SUMMARY

i Work in several aspects of detection theory has been in progress

over the last two decades. Electronic engineers dealing with communi-

cIation theory have looked into detection problems which develop from

their studies. Another direction of work in detection theory stems

I from the work of physicists in the area of radiation and infrared de-

tection. Detection theory is a term also applied in research problems

and in other contexts. The concepts and methods of probability and

J statistics play important roles in these studies and vary with the

character of the problems. Communication theory is most closely allied

j with the branch of statistics dealing with hypothesis testing and the

work of transposing this statistical methodology into the field of com-

munication engineering receives much attention. The second study men-

11 tioned above is concerned more with estimation problems and has not had

such a straightforward development as the first. It has not been clear

U which physical and statistical concepts are useful nor how detectors

(i.e.., radiation detectors) should be evaluated. Here the major problem

is one of determining how actual detector devices fall short of being

ideal in some sense. In this case more than in communication theory

there is a need to simulate mathematically or probabilistically the

i vorking of the detectors in order to understand and evaluate the detee-

I tion process.

I _



Radiation is often thought of as a Polsson stream of discrete quanta

or eventse, or a combination of Poisson streams, and radiation detectors

can therefore be thought of as estimators of the parameter or parameters

of these streams. One criterion for Judging the performance of radiation I
detectors which appears particularly useful is that of "quantum effi- I
ciency". This expression has been used in a variety of ways. Like most

indices it has grown out of intuitive notions and thus some initial de-

finitions appropriate for the original motivation must be used carefully

in other settings. In Chapter I we give a specific definition which is

used throughout the paper.

The history of this expression is interesting. Originally it was

used simply to designate, for a given device, the ratio of the number

of output events, M, to the number of input events, Nj a usage which

can be shown to be quite inappropriate in a large number of situations I
(see Chapter IV). The modern version of this concept was first formu-

lated by Rose (11) and later reintroduced under the designations "detec- f|
tive quantum efficiency" by Jones (5,6) and "quantum efficiency" by

Fellgett (I). These writers defined the notion as a ratio of signal-to-

noise-ratios of the "ideal detector" to that of the actual detector. I
Another definition was proposed by Zweig, Higgins, and M)cAdam (20).

It is the ratio, lying between zero and one, of variances of estimates

of intensity (e.g. mean of a Poisson process) for an ideal detector

(numerator) and for an actual device (denominator). They also dsmon

strated that this definition is equivalent to that used by the earlier i
writers when it is applied to their analyses. Using this concept of

qwatm efficiency, Weig (18, 19) examined a simplified model of the

2II
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+o purpose of the prsat work is to deril. the quJntw eicdenow

of a variety of detectors for which mathematical models already exist

I4d to develop new models for some physical situations which can be

examined in this light.

I The plan of this work is as follows: In Chapter I, (a) a summary

of the models which will be analyzed is given, (b) the applications of

I these models to specific detection problems is indicated, and (c) the

methods of estimating the parameter of interest and the efficiency of

the estimates is defined. Chapter II contains a summary of known dead

time counter models and evaluates their quantum efficiency. In Chapter

III a new class of counters, called coincidence counters, is introduced

and evaluated. Chapter IV contains a discussion of photographic detec-

tors. The dead time and coincidence counter models are used here to

simulate the photographic effect known technically as "reciprocity

failure", and the quantum efficiency of photographic detectors both with

and without reciprocity failure is obtained. Chapter V contains two

II other applications of the counter models. In this chapter it is shown

how combinations of counters can be used to solve more complex detection

[I problems. One application involves using dead time and coincidence

I "counters in series. 7hii combination is useful in solving a radar

ranging problem when the detection problem consists of Oatemining the

presence of a pulse pair in a Folsson noise stream. Another aliplleaI on

Involvsea using these counters in parallel. In this case the applicotlon

Iof itsat I that of determining the component paramters of acOPftA
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I MAP= 1.

Various ~ ~ ~ A tye fcutrmdl aebeniSNtoU ceMn cse

terizedub the ofactunteat aoregistee eavebent pnroduces anded timsedurn

I~hv whichie nfrtherms evtentsicve tregitmered. Type II counters are charac-

terized by the fact that aeincoming events produces dead time during ic

further incoming events cannot be registered, although these events

are capable of prolonging the dead time, that is, paralyzing the counter.

I Precise definitions of the counter models will be found in the sections

in which these models are discussed and evaluated. Mobdifications of

Type I and Type II counters have also been introduced and studied 1in the

3 literature.

Although the problem of dealing with transformations of Fbisson

Iprocesses goes back at least as far as Bortkiewiez's paper of 19'13 (1),.

II the earliest formulation of what has come to be called the Type II

counter seems to be that of Levert and Scheen in 19113 (7). The distinc-

11 tion between Type I and Type II counters was made somewhat earlier (1937)

by Ruark and Bramuer (12). Malmquist (8) considered the case of a IMPe

II I counter operating on a process with arbitrary, inter-arrival time die-

tribution 1(t), thus generalizing the Poisson inpuit intor-&Trlviml time

distribution F(t) 1- l- rather than ~the countelp mechavlsm. Yll~er.

() OQnfining biaself to the classical Type 1 sar TLy" 11 *0402s, bas

ii ~54
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Odiif the use of straightforward probabilistic arguments and l]place i
U4msfafms to determine the laplace transfers of the inter-arrival %tie 1

distribution of Mgsstored events, Takacs (16 )0 using asiiaapoc,

eralllsed thA counter model so that each incoming event produces a I
dead time interval T with probability p and another event occurring

during this deed- time, if one is created, will not be registered altbommh

it may also produce another dead time with the same probability. The 3
case p - 0 produces the Type I counter, while p - 1 produces the

Type II model. In this paper, we shall evaluate the quantum efficiency I
of Type I and Type II counters. These provide interesting comparisons

with the coincidence counter models which will be developed, as well as

with the photographic type of detectors.

Takacs' model is interesting in that it provides a bridge between

the Type I and Type II counters. However, in doing this it also blurs

the distinctive features of these counters and it is these that we want

to exploit. Takacs has also dealt with a coincidence problem which is t
concerned with the probability of finding several dead time counters

simultaneously locked. This is a different type of coincidence situa-

tion than the one we now present. H
The simple coincidence counter model we now introduce is intended

to work as follows: An incoming event, say a photon, is not directly

recorded by the detector. Instead it changes the state of the detector f-
say from S to S. The state 81 Is mintained for a fixed time

following the i ncideno of the photon. If during this time interval no

hthMer arrival tab, s pl.ce, the detector reverts to state So aled

otWut Mooit Is" reciordd. Uf, however, vhile the deteco.r is In #t#te

0ý7 6



trI=t iedýIey reverts to sAte lb"I fO1 or. OWW

bioldent at the detector at time ., t + 2.Ov,, t.+~4r t + 2.51" Mal

It + 3T an Oxtyatý ev~ent vat"d be ?"iftered at ti~es t + 21,1, and at
+ t + i or* in this fate five input events have produced tvo output events,

I The R-fold coincidence counter is a generalization of the siuole

3coincidence counter,. Here, Incoming events cause cehanges in the state

of the detector from S I to Si~ Provided the detector is in state

I ~ ~ S (i -Q1..Rl at the time of the arrival of the input event.

For I -l,..E the counter remains in state i for a time I

which is now taken to be a random variable with distribution indepen-

Ident of i. If no further event occurs during time T following the
last input the counter reverts to state S0without registering a count.

IOnly if state % is reached is a count registered with the counter

inmediately reverting to So.

The photographic detector is a counting device of an entirely dif-

3 ferent type but the counter models nevertheless play a part in the ana-

lysis of this type of detector. Basically the photographic detector

(the emulsion or photographic plate) consists of an ensemble of many

counters (the individual photographic grains), each of whioh is able

IIto register a count only once. The fractional numsber of grains that

g ~develop Is then a measure directly related to. the average nm~ber of

photons, Incident on eofh grain dirng the time of exposure. 2* Te-aim-

I ~ ~plest photographic detector oon#,Uts of grains *4 of thea* s$
and speed, i o.e, each~ gr*Ai reqwime photons to u*e 1* ve,4biI (tu s, to resistor count). *Ad*~ from- Variatifts. Iava si*~.



which will not be considered, actual photographic detectors consist of

an ensemble of grains of varying speed so that R, the number of photons 1
required for registering an output event, is a random variable with

distribution dependent on the particular photographic material.

2. ApplicationsI

There is, a photographic effect which can be explained in terms of

the dead time and coincidence counter models introduced above. This

effect is known technically as reciprocity failure and manifests itself I
in two different ways. (a) At high intensities X and short exposure 1
times T the photographic detector registers fewer events for a given

average number of photons per grain XT than when X is somewhat

smaller (but XT is fixed). This can be explained by postulating a

dead time T following each incident photon so that only those photons I
contribute to produce the necessary number R of input events required

for developability of the grain which arrive at least T units apart.

(b) Low intensity reciprocity failure denotes the condition in which

the response, for a fixed average input XT, is again lowered, this

time when the intensity of radiation X is low; that is, the photons

arriving at a grain tend to be spaced far apart. By assuming the type

of mechanism discussed in the case of the coincidence counter, this

type of reciprocity failure can also be explained. The dead time

counter models and coincidence time counter models postulated for photo-

graphic detectors can be identified with the times required for the

photochemical creation of electron hole pairs and the recombination for

such pairs respectively.

8 Ul
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Apart from this application of the counter models, other possibi-

lities suggest themselves. The use of a Type I and a simple coincidence

counter in series enables one to construct a device for detecting the

I presence of a pulse pair of known spacing embedded in a Poisson noise

stream. This combination of counters suggests itself from range deter-

mination problems in space systems. Another possibility would be to

use these counters in parallel. If the Poisson stream consists of a

variety of particles of different energy E, and the coincidence counter

can be constructed so that particles of energy E < E produce only

one transition (S0 -* 81) whereas particles with energy E> E0

produce two or more, then the coincidence counter will respond primarily

to the high energy particles. A dead time counter, on the other hand,

will not differentiate between particles of different energy. By varying

Ithe level EO it is thus possible to estimate the energy distribution

of the Poisson stream. Since energy is directly proportional to fre-

quency what we have thus described is the discrete counterpart of aI spectrum analyzer. This analysis may be useful in the study of separa-

tion of energy levels for high energy particles.

3. Methods

The method for obtaining estimates of the Poisson stream parameter

If is the following. We take as our datum the quantity M(t) which is

the observed total number of output counts from the detector in time T.

IiFrom M(T) we need an estimate, say f[M(t)], of the expected

number of counts, given X, in time T, E(M,(T)). Asymptotically,

i.e., for large T, we know by the law of large numbers that M(T) will



approach Z(Mx.(T)) provided the variance of M(T) is finite. Now

since M(T) is an asymptotically unbiased estimate of E(MN(T)) we j
choose f[M(T)] - M(T). Thus M(T) is our estimate of the expected

number of output counts. The mathematical model will provide a relation

between the parameter X of the Poisson stream and the expected number

of output counts in a fixed time of observation T, namely

r(X) = E(MX(T)). We then obtain an estimate of X, call it X, by

equating M(T) = r(X) and solving for X. This yields a unique,

asymptotically unbiased estimate provided the expression r(X) is

continuous and monotonic in X. In the case of counters the expression

for E[MX(T)) is derived from the Laplace transform of the inter-

arrival time random variable using results from renewal theory. In the

case of the photographic detector the expression for E(MX(T)] is de-

rived by direct argument.

The ideal detector is one whose estimate of X call it X* has

the lowest possible variance in the class of unbiased detectors. When

we are dealing with Poisson inputs we can achieve a variance whose I
lower bound is given by the Cramer-Rao Theorem. In this case we know

that a uniform minimum variance estimator of XT , when the process is

observed for a total time T, is N(T), the total number of input

events. This estimate has variance XT and hence the variance of the

best estimate of X, i.e., X* , is obtained from

(i.3.i) var[k*) = var( ) = 1 var[N(T)) X
T T2T

Having settled on a method for estimating X and an upper bound I
on the precision (lower bound on variance) attainable from any detector

10 I
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I we can define a measure of efficiency which will allow us to compare

I different detectors.

We define the quantum efficiency of a detector as the ratio of the

A
variance of the estimate %* to the variance of the estimate X pro-

duced by the given detector. This efficiency is a function of both X

and the length of the time interval of observation T, (and other para-

meters depending on the model) although in many cases it will be inde-

pendent of T.

We shall be concerned here with asymptotic results and we shall

obtain the asymptotic quantum efficiency in the following way: We

obtain asymptotic results for EtM),(T)) = r(X) and then obtain the
A

asymptotic estimate X by solving the equation M(T) = r(X). To obtain

the asymptotic variance of this estimate we expand M(T) = r('), in a

Taylor Series about X, the true value of the parameter,

I I (1.3,.2) M(T) = r() = r(%) + dr(-) +%........

or

d E(M),(T)) %
(1.5.3) M(T) - r(X) dX (X-') ..

•I Squaring both sides of (1.3.3) and taking expectations (ignoring

1 higher-order terms) we find the variance of M(T) is related to the

variance of the estimate of X by the equation

(1.3.4) var(M(T)] = X- 2 var(

I



or
(.5 d E(Mx(T)) -2 1

(1.3.5) var(X) = d% ] var(M(T)] 11
Since the ideal detector estimates X by X* which we know has

variance X/T we note that the asymptotic efficiency, C;, is given by

(1.3.6) var(k* N(T) I
varft M(T))

or

d ECMX(T)) 2

(1.3.7) dXr(
T var(M(T) I

The discussion in this study is concerned largely with such de-

vices as the radiation detectors and counting tubes used and studied

by physicists, and for these the measure C is extremely useful.

Other measures of perf'orinance would need to be devised for detectors
I

whose function it is to decide between alternative states of nature.

For example, in the case of two such states, a criterion of efficiency

might involve not only the probability of a correct decision, but the

time involved in reaching a decision. This would be especially true

in monitoring fallout, where the object is to decide whether the level

is or is not critical. A simpler criterion for evaluating a detector

which must decide which of two possible states prevails would be the

total probability of error over a given time span. We shall evaluate

a particularly interesting detector with respect to this criterion inChapter V. 1:

i1
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-I CHAPTER II

I THE DEAD TIM COUNTER

1. Results From Renewal Theory

We shall follow Feller (3) in deriving the Laplace transform of

j the inter-arrival time random variable for the Type I and Type II

counters, since the type of argument used, particularly for the Type II

counters, lends itself to deriving a corresponding result for a simple

coincidence counter mechanism. However before deriving these results,

we will look into some aspects of renewal theory which will be helpful

in arriving at the efficiency of the detectors under consideration.

What we require is a relation between the mean and the variance of

the inter-arrival distribution and the mean and variance of the numberI I of events that will occur in a given time. These results a~re discussed

by Smith (14), and an elementary treatment is given by Saaty (13). Let

X be the random variable which denotes the elapsed time between suc-

cessive events (renewals), all of which, except perhaps the first, are

assumed identically distributed. Then, we can write

S(2.1.1) Tn + x .+ . +x

to denote the waiting time random variable up to, and including, the

thth event. This waiting time random variable has a distribution re-

lated to the distribution function F(t) of Xi, which is given by

(2.1.2) F(n)(t) = F(n-l)(t-x) dF(x)

Swhere F(n)(t) denotes the n-fold convolution of F(t) with itself.

[ 13



The Xi are also assumed to be independently distributed.

Let exactly M events take place in a given time T. Label this ]

M(T). The probability of this happening is

.21.3) P .F(M)(T) - F(*l)(T)

since this is the probability that the M event but not the (M+I)st

event takes place prior to T. From PM we can then derive the mean I
and variance of the number of events in (O,T). Letting E(M(T)) and I
var(M(T)) denote these parameters, and • and a2 the mean and

variance of the distribution F(T), we have, from the key renewal

theorem of Smith (19) that, as T -*co

(2.1.4) EeM(T))] T

and

(2.1.5) var(M(T)) A

These results can be viewed in the following non-rigorous manner.

Heuristically we may write .1
(2.1.6) E(X1 + ... + XM(T)) = E• EIM(T)) ,

that is, the expected time for M events should approximate the expected

time for one event multiplied by the expected number of events. Likewise

we may also write

var(XI + ... + i a2 EM(T))

remembering this is an approximation based on the same argument since

14i
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I the variance of a sum of independent random variables is the sum of the

variables. Thus we may also write in the same approximate vein

(2.1.7) EEX + *.* + xM(T) - . M(Tr)] 2 = a E(M(T))

Furthermore, for large T we expect

(2.1.8) x, + ... + xM() oT

The actual value is of the order T - p, (recall p is the mean waiting

time for an event and thus for the first event) which for large M can

be approximated by T, hence using (2.1.6)

(2.1.9) E[M(T)) T

and substituting in -(2.1.7) we get

2I a2T
(2.1.10) 

E[T M(T)).

Multiply both sides by / 2 obtaining
T 2 T

(2.1.11) E[M(T) - •T T

and since T can be replaced by E(M(T)], we get

P 2
U (2.1.12) var(M(T)) -•a 43

With these results in mind, we return to the evaluation of counters.

I 2. The Typ I Counter

The operation of a Type I counter can be described briefly as

U! follows:

U 15



A counter which immediately registers the
first input event and then only those input
events, which are not preceded during a
fixed time interval by a registered (output)
event.

The results for the Type I counter are those which are most easily ]

obtained. The dead time is assumed to be a constant T and the counter

operates on a Poisson process which has for inter-arrival distribution

-Xt ;of input events the negative exponential distribution 1-e . Thus ]

the inter-arrival time of registered events have a distribution (after

occurrence of the first event) il

(2.2.1) F°(t) 0 leX(t') t 
1

t >

Fo(t) is used throughout to describe the output inter-arrival time

distribution, F(t) has been and will continue to be used for the

inpt inter-arrival time distribution.

The Laplace transform of t is

-st

(s)= 1 dF (t)'Po 0

(2.2.2) = 10W est %e.X(t°T) dt I
e-ST

Since

f d % (s)
(2.2.3) - t dF (t) at Ig o0 - f 0 t

and

16 I



I

(2.2.4) 0 go f o t 2  -__t) . r
o '0 dt s=0

we obtain the mean and variance of the inter-arrival distribution of

counted events:
I ~(2.2.5) +

I and

(2.2.6) _2 1

I Employing (2.1.4) and (2.1.12), we get

II(2.2.7) E(M(T)) = i

andI: XT
(2.2.8) 

var(M(T)) = TX,+>

Before we compute the quantum efficiency, it is interesting to

note that for large values of X, that is, strong incident radiation,

we get

(! (2.2.9) E(M(T)) -+ T/¶

• and

I!
(2.2.10) var(M(T)) -+0

This result can be viewed in the following way. In the limit as X -+o

we get counts periodically and immediately following the end of the last
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dead time, so that the number of counts becomes strictly proportional3

to the observation time, independent of X, and thus the variance is

_ zero. The quantum efficiency is obtained from the expression (1.3.7)

(2.2.11) "= rdvar(T)J if
which, in this case, turns out to be

k 2

(2.2.12) 1 T (XT13

or I
(2.2.13) I

We see that for non-zero T the quantum efficiency tends monotonically

to zero as X -* oo; that is, for strong radiation, the Type I counter

is not very efficient as an estimator of X. The number of counts

increases with the time of observation, but tends, for large X, to

become independent of the radiation strength and only a function of the

dead time. The efficiency depends on the arrival rate X and is in-

dependent of the time of observation T or the total number of incident

events.

3. The T II Counter

The operation on the Type II counter can be stated as follows:

A counter which immediately registers those,
and only those input events, which are not
preceded during a fixed time interval by an
input event.

18



We follow Feller's (3) argument is establishing the inter-arrival

time distribution of output events for the Type II counter. It should

be noted just from the physical situation that the number of registered

events in the presence of strong incident radiation tends to zero for

any given time interval T.

Let

I (2.3.1) p = e~k

I and

(2.3.2) q = l-e"

denote respectively the probability of a non-arrival and an arrival of

I an incident event during a time span T. Then the probability, once a

counter is paralyzed, that v events will prolong the dead time is

q p. Let X denote the elapsed time between input event numbers

(i-l) and i. Then we can write

1 (2.3.3) T(v) = Xi + ... + xv +

Sfor the total time that the counter is paralyzed by exactly V events.

This is a random variable, conditioned on V, which is the sum of V

independent, identically distributed random variables. It follows

that the Laplace transform of T(v) is the product of e and the
S~th i

V power of the Laplace transform of Xi. Once we have the transform

of T(V), we can multiply qVp and sum over v to obtain the Laplace

transform of the unconditional paralyzed time random variable which we

need to evaluate the Type II detector.

19Ii



The probability that an event will occur in a time (O,t) with

t < given that it occurs in a time interval (0,0) is

1-e-xt 1-e-xt
-Xt

and this is the conditional probability P(Xi <ti, for i=l,...,v J
and gives rise to the Laplace transform -I
(2.3.5) e - d t = - -efo -e =T q

so that the Laplace transform of T(V) is simply

(2.36) 9(s) = (•)V [1-e"(X+s)T] •-sT•

(2.3.6) (PV 1 Xs

The unconditional Laplace transform is obtained by summing )

(2.•.7) • oe°• • -s .1 [}(X+s). V q

V=O q

which yields

(2.3.8) ,,(~~-(s+X)Ts+Xe"sx

This is the transform of the paralyzed time distribution. To

obtain the transform of the inter-arrival time of registered events, we

must take into account the additional time from the end of paralysis

to the arrival of another incident event. The latter has Laplace

x
transform v+s so that we obtain finally the Laplace transform of the

inter-arrival time distribution of registered events as

20
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I • " ~s+% e'(+- '

(2.3.9)

l ~= • • e'(S+X)"

s + , e"

l The next step is, as before, to obtain the mean and variance of the

inter-arrival time distribution. It turns out, both in this case as well

as others, that it is much less tedious to obtain the derivatives of1I
I rather than q(s). Noting that

I (2.3.10) ds 7 (S1

and that •(O) 1 we have

(2.3.n1) cp= '(o) d 1

-I Also

2 2 2
I (2.3.12) [ - pl "(s) • +

d s2 [p(s)]3

so that since

Ii 22 2 d2
(2.3.13) 2 + o =2 d [(o)]

ds2s

I For the Type II counter we have

I Se (X+s)T+

!(2.315) e +1

II 21



so that

(2.3.16) d (o-T). 3 +,,e), + e
ds

0

and

(2 "•317) q•. (a)-) [ "e ( ' + -- •" + :"
Consequently

(2.3.18) -s M ] 1 e= 0p
and

d 2 1 2T kr

(2.3.19) [-- I edes2 0-

Hence

XT

(2.3.20) 0

and

2 e2Xr 2Te XT

(2.3.21) C2 F 2O -- X---

Again using (2.1i.4) and (2.1.12) we obtain the mean and variance of

the number of counts in an interval [O,T]. These are

(2.3.22) E(M(T)) - XT e-XT

and

(2.3.23) var.(M(T)) XT e (eT - 2,rt]
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From these quantities we proceed to deduce the efficiency of the

Type II counter. Using (2.2.11), we obtain readily

X23.k (T- " - X~-( T XT(e - 2Xt) e( -_ T)

(e ).T_2Xr)

'The character of this result suggests that we look at the Type Il

counter a little more carefully. Formula (2.3.24) asserts that the

[ efficiency of this type of counter is unity when X is zero, decreasesi

monotonically to zero at X -.1 and then becomes positive again although

it tends to zero for X = oo

I This type of behavior is not quite so surprising if we take another

look at the distribution of the output counts, M(T). From equation

(2.3.22) we see that the response function r(X) = E[M,(T)) is not

K monotonic in X. As the radiation strength increases, the expected

number of counts increases only until X = 1. For X > the expected

number of counts actually decreases with increasing X, since the amount

of time that the counter is paralyzed now becomes very large. A con-

[ sequence of this is that the function

Ii (2.3.25) r(=) XT e" -

I has no unique inverse. The only way to infer a unique value of X

from a single observation 'M(T) is to have additional information

about X which guarantees that either X is less than or X is
1

larger than * In the absence of such information it is necessary to

have an auxiliary experiment. We could, for example introduce an

23



absorption device into the Pbisson stream which reduces its intensity

by a known factor Q. The reduced stream of intensity QX will, if

1 < , produce a reduced expected number of counts in time T. If

X > 1 and Q is near unity we would tend to get a larger number of I
output events from the reduced stream. This auxiliary experiment would

thus allow us to estimate, uniquely, the parameter X of the Poisson

stream. We see from this that it should not usually prove to dffficult :
to obtain a unique estimate of X from two observations of M(T).

24hS~I
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I CHAPTER III

SCOINCIDENCE COMT

1. Introduction

A number of different problems in a variety of contexts can be con-

structed, all of which have at their core the existence of an integer

valued random process, Xj(t), which, starting from the state SO

strives to reach some preassigned state SR' The process can increase

by integer amounts, but if no jump occurs for a sufficiently long period

of time, the process will revert to its initial or ground state, and

must begin its climb towards state SR all over again.

We can imagine a psychologist constructing a complex learning

or maze experiment in which "success" depends on the performance of

[R successive tasks, and if any task is not performed with sufficient

alacrity, the subject must begin from scratch. Such a process also

occurs in the study of photographic detectors, in the study of Lasers,

and, in fact in a great variety of scientific and engineering situations.

The fact that neither Type I nor Type II counters (and presumably

' intermediate types) are very good detectors for large values of X

would lead one to suspect that in those cases where an extreme range

I of parameter values X is a priori likely to occur, different countersu ought to be employed. As the discussion of coincidence counters will

show, this type of device should prove of some value in such cases and

I moreover it provides a new model for various physical situations such

as those mentioned above.

25
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2. The .Simpe Coincidence Counter

As model for a simple coincidence counter, we shall consider the

following mechanism: An incoming event impinges upon the counter which

is so constructed as to be able to hold this event in memory for a I
time Tr (a fixed constant). If another event occurs during the timeI

that the first event is in memory, the counter registers an output

event and resets its memory to zero content. If no second event occurs ]

during time T, the first event is lost, that is, produces no count.

The formal definition of a simple coincidence counter can be

stated as:

A counter which immediately registers an

output count whenever an input event is
preceded during a fixed time interval T J
by a nonregistered input event.

Such a situation may be obtained, for example, on a photographic

emulsion in which the first photon incident on a silver halide grain

creates an electron-hold pair which has a lifetime T before recom-

bination takes place. If, however, another pair is formed shortly

after the first, a latent image speck, that is, a developable silver

nucleus, or, at any rate, a stable, sublatent image speck (i.e., a

stable speck but one too small to be developed) may be formed. Another

conceivable situation in which a coincidence counter model might be

useful is that of light amplification by stimulated emission of radi-

ation - the so-called LASE. In this device, photons are required to

be stored until a sufficient number are accumulated which are then re-

leased simultaneously to produce an intense monochromatic, coherent

light pulse. If an insufficient'number are captured during the holding
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I
time of a ruby crystal or other lasing material the photons which arrive

during this time do not produce a light pulse and are wasted.

It should be noted that the coincidence model suggested above dif-

I fers from the general counter model proposed by Takacs in that the oc-

"currence of an event within T units of an earlier one produces a re-

generation point (in effect, a new origin) for the output stochastic

I process in our case, but not in Takacs' case. In his process, an output

event could occur after the arrival of both the second and the third

I input event. In our model, that would be considered physically im-

possible. To get two output counts, at least four input events are

required.

The Laplace transform of the output inter-arrival time random

variable is derived as follows: Beginning at a time when an outputI event has just occurred, let X0, XI, X2,... denote the time between

thfurther successive input events. Assuming that the N event produces
I ~ ~the first count, we have XI > r, 2> ,., i> 'r but _

(note that there are no conditions on X0 ). Let T(N) = X0+ XI " 4

thefistcoutwehav >TX 2  ~ ** (N ) > ¶, bu XN +..+X

denote the total time between output events. Then the conditionalI Laplace transform of T(N), given N, is

N-1
T() -X 1 -sx

(3.2.1) E(e5 T(N) IN] = E[e o] VEe i--'Ix > r] E•e nIX< ].

[ Noting that the conditional probability that two input events are X

i units apart, given that they are not more than T units apart, has

density

I (3.2.2) Xe 'x
1-e%,

1 27



we find the condittonal Laplace transform (i.e., the transform of this

conditioned random variable) is

(52T - x =

i ~(3.2.3) E.[e'SXlx < -r] e esx Xe'x dX (~'+)
_ fo 1-e XT (s,%) (1.e.-, X

Similarly, if we know that two input events differ in time by at least¶ units, we obtain the conditional Laplace transform

(3.2.4) E~e- sxX > TI f e -s Xe~ ), dX Xiisx,

Sk-77 Me- XTk)
e 7 d (s+x)e~k

From these results we obtain the conditional Laplace transform of

T (N) given N N

E[eT = sX[e- IX> T],' E[e-SXIx_<•]

x Xe- (S+%)-r N-1 X(l-e-(S+x)
(3.2.5) = • (s+x)e.- (s+x)(1-e.- -

X N+I e- (N-l)(s+X)T 1-le- (S+x),
37, ( " - -s e ( N - l ) X T l e X ,T

e- 1-c-

To obtain the unconditional transform of T(N) we multiply by the pro- 4
bability that the first output event will occur at the Nth input

event, namely, (l-e-T) (e Xr)N'I and sum over N obtaining

(3.2.6) E[e-sT] E[e 'ST IN(l-e-X-)(e'kT)N'l

N=l

This yields

(5s.2.7) E[esT] = ( )2 (l-e(X+s)T) [-(s+X) N-

N=l
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I
and after sunning the infinite seriesI

-- X 2 1-e- (X+ s)T

(3.2.8) p (s) = (,-) '

In this formula, the term X 2/(X+) represents the transform of the

waiting time for the second input event of the Poisson stream. As

T -*co the second input event can be taken as producing an output

event, which is what we would expect of an infinite memory device.

Proceeding in a fashion similar to that used for the Type II

[ counters, we obtain after some manipulation,

(3.2.9) 1 x r s

[ d 1 1 1. s_+d.[ ]=) [ +1]Ts (-cP;7e- (X+s)T

I (3.2.10)
+ X+s d2 1 e ' ( i+s)¶ 2

(3.211)+ ST ew~~ X ' e(s+X )T

Xa -e [_ T] [(1.e-(÷s,)
d21 2

[•(3.2.11]) + S T " (: _e-(S-+').)T ]

U] +s [...]

so that

Ii + 1 2-e- XT_
(3.2,12) go = 1 + 1 2-e

29
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(3..1) 2 - 2 -XT 2 2 i
+ i-e T)

.e'

Now

(3.2.3.5) var(M,(T)) nt T(leX ; [Xre- T_2(1-e- X) + (2..e-XT)2i.

Let us now differentiate E(N~(T)) with respect to X 1
d EM()- lexr 2exr) 1

(3.2.16)

+ TXTe" (2-e1XT-'r T-Xe (i-e X)(2-e X)-2

Hence the efficiency of the coincidence counter is

4' (T(l-e-X1)(2-e-X )-1 + ,TXTCe.rt(2 -e-XT)1

(3.2.17) -T~e (1-e T( 2-e-r))

(2-e~'X ) 32

)[l--Xr Xe'X -2(1-e -T)+(2-e-X

or

30



Such a coincidence counter resembles a Type I counter in that the

expected number of counts E(MN(T)) is monotonically increasing in X.

It differs from this type of counter in that the expected number of

counts is asymptotically proportional to the number of input events as

3 T becomes large. This is also reflected in its quantum efficiency

,which, although more complex in form, tends to increase from zero for

X = 0 to 100 percent as X tends to infinity.

The response function, r(i), of the coincidence counter is

clearly monotonic since formula (3.2.16) which is its derivative has

SI no zeros in (0, oo). Also, as is apparent from the expression for

the efficiency of the counter in estimating the parameter of a

I Poisson stream is independent of T.

In actual practice a coincidence counter could be expected also

to have a short dead time after registered events, so that a cross be-

I tween a Type I and a pure coincidence counter would have to be considered.

It is also interesting to speculate as to the suitability of such

a counter for separating a periodic signal from contaminating Poisson

sources. If, for example, a coincidence counter with variable time

constant, T, could be constructed and a periodic pulse with repetition

Srate X were incident as well as a Poisson source with mean rate X,0

we would have that

(3.2.19) E(M(T) X

for T a little less than 1 and X << X (since, in combination
07 00

I with an adjacent periodic pulse every random pulse produces a count)

but
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(3.2.20) 11(1(T)) 2-0--

for T > r- , so that a discontinuity in the plot of E(141(T)) as a

function of T would indicate the presence of the periodic pulse

train if present. (For T << Xo we would expect that periodicity

would be irrelevant so that in that case

X+X ) E¢(-e 0

CM(T)) 0 -XX ....

as in (3.2.14)).

Coincidence counters have been constructea and used (15) to study

radiation which does not have Poisson character. Here again, the plot

of E(M,(T)) for fixed mean input rate X and fixed observation time I

T, but variable time constant r should be useful as a comparison with

one obtained from a known source. One can use it to infer the existence

of non-randomness in the unknown source as well as to estimate the

parameters of interest.

3. The R-Fold Coincidence Counter

One natural extension of the simple coincidence counter is to per-

mit input events arriving within specified time intervals to change

state levels of a counter, and allow the registering of an output event

only after a terminal state, say after the R input event, is reached.

We term this the R-fold coincidence counter. For R - 2, this reduces

to the previously described simple coincidence counter which has two

states 8 and S1. Then an input event changes the counter from 8

to 8 and if another event occurs before time T, an output count is
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registered and the counter Imnediately reverts to S . The counter also
B0

I mmuediately reverts to So at time T without registering if the input

does not arrive within the time Interval.

Briefly we can describe the R-fold coincidence counter as follows:

A counter which immediately registers an
output event whenever an input event is
preceded by (R-I) non-registered input

events none of which are spaced more than
T units apart and T is a time interval
of random length whose (R-1) values are
independently and identically distributed.

Here we shall derive the waiting time distribution (or, rather, its

Laplace transform) for the first time occurrence of the critical level R

in the case where the waiting time between upward Jumps of unit magnitude

has negative exponential distribution, F(t) = l-e- . This is equiva-

lent to the assumption that input impulses constitute a Poisson process.

We also assume that all the levels Sj, J=l,2, ... ,R-l can decay only

I to S and that such decay takes place at the end of an interval of

duration r following the latest incident impulses. We assume that

each is itself a random variable with absolutely continuous density,

and with distribution function G(T) which is independent of S3  and

the times of occurrence of the states S . The special case R 2;

G(T) = 0 for T < To' G(r) = I for t > T9, was treated by another

j method in the previous section.

- kWe shall not attempt to evaluate the efficiency of such a general

coincidence counter explicitly since the mathematical manipulations be-

" come too tedious and unmanageable. Ad hoc cases of special interest

can be handled by computers. Our concern in this section is primarily

,1!3
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to arrive at the formula for the inter-arrival time distribution from

which, by the methods covered in earlier sections, the efficiency can ]
be derived for those specific cases that may be of interest.

The process with which we are concerned is non-Markovian in the fJ
sense that merely knowing which state Sj, J-l,2,...,R-l, the process

is in at a given time t is not sufficient to calculate the probable

behavior of the process beyond this time. In addition, we need to ]
know how long ago the last impulse occurred. The only case in which

such knowledge is not needed is when at time t the process is 1
discovered in state S

We shall write pj(t,¶) for the probability density that jointly:

a) at time t the process is in state Si' b) that it reached this I
state T time units ago, that is, at t - r; c) that the state at

t = 0 is S , and that previous to time t the state R was not

reached. Now the probability that a decay to S takes place duringo

the small interval (r,T + B) after occurrence of the last impulse is

8 G'(r), and the probability that no decay takes place during the time

interval (t-i,t) is I-G(r). Hence the conditional probability of

decay during the interval (,r,r + 8), given that no decay has taken

place during the elapsed time T since the last impulse, label it

8g.(T), is given by

(3.3.1) 8.L('r) = 8.G' (,) .

1 - G(r) ...

Later on, it will be useful to consider the solution of this differential

equation, hence we note here that from the above one can obtain



I
I

(3-3.2) (;(T) -feo to(x)dx

im| iThe function p(i) is sometimes called the hazard function, and has

been discussed, for example, in connection with telephone call demands

and other queuing problems. In the particular case where G(') is a

I negative exponential distribution, it is seen that g(.r) is constant,

so that the conditional probability of decay after T time units from

'K the last impulse have elapsed is independent of T. It is in that

sense that the negative exponential distribution is said to have no

memory.

We shall derive here a set of differential equations from which the

laplace transform inter-arrival time distribution of output counts can

I be obtained. First let us obtain the probability that the state of the

I process will be S (J > 0) at time (t+8) and that T+5 time units

have elapsed since the last impulse, given that at time t the time

elapsed since the last impulse was T and write it as a function of

P (t,i). We assume here that, for small 8, the probability of an

Iiimpulse during a time interval 8 is X8 and the probability of no

I impulse is l-X8j and that other cases have such small probability

that they can be neglected. These are the usual assumptions linked

I to the fact that the input impulses form a Poisson stream. In terms

of pj(t,T) and the hazard function p(T), we can write

(pi(t+5,r+b) -

35
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o,, neglecting terms in 52 since 8 is assumed small we get

(3.3.4)- (1-(8-8 -i()lp(]pt,T) •

If during the interval (t,t+8) an impulse occurs, we have, for

the probability that the state in8 S at t+8 and that the time t' j
since the last impulse was less than 8 [denote this by pj(t+8,t'< 8)]

(3.3.5) p(t8,t'<8) - X8f(t,)dT

where the integrand on the right represents the probability that the

state was SJ. at time t , had been attained T time units earlier;

and did not spontaneously decay in the time span (,r,,+5) following I
the moment it was attained. Since all possible times, T, of attain-

ment of the state S must be considered, the probability of no

decay from state 831 during (t,t+5) is 100 (l-8g('))pj~l(ti)dT.

Again neglecting terms in 82 this becomes

(3.•3.6) p (t+8,t'< 8) = X5 f00 pj.1 (t,,r)d.r

Note that pjfl (t,T)dv is the probability that the state is

8 J1 at time t regardless of how long ago the state was attained.

For use later on we note that we can approximate p (t,8,,'< 8) by

86.pj(t,8,•' = 0) since the time interval 8 is small, so that the

probability of an impulse at some instance r' in (0,8) is nearly I
the same for all T' in this interval [see (3.3.20)].
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These considerations hold for J3l,2,...,R-l. For state 110.0 we

I have

R-1 oo
. o(t+) (1-X)po(t) + I (i-M) J 8 p()pj(t,,)d,

i.e., the probability of being in state S at time t+8 is the pro-

bability of being in that state at time t and having no incident

events in (t,t+B) plus the probability that a decay occurs in the

period (tt+b), when the process is in state S (j=l,2,...,R-1) at

time t and no incident events occur during (t,t+B). Note that the

I integral under the summation represents the probability of a decay in

the period (t,t+b) when the process is in state S (j=l,2,...,R-l)

at time t and this probability is independent of how long ago the

I state S was attained previous to time t. Similarly for

p0 (t+8,,r'< B) we have by (3.3.5)

(3.3.8) po(t+b,r'< 8) = X5 f (l-8,L('))pRl(t,¶)dT

In the period (tt+B) a transition from state SR- to state SR

may occur thus causing the process to revert immediately to state

S and register an output count, or we may write

R-1 00
S(3.3.9) po(t+÷) = (1-xb)po(t) + I J &OP (t,T)dT

j and

(3.3.10) p0 (t+8,T.< 8) = po(t+8,8')d8' - pR.l(t,¶)dT
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if terms in 52 are neglected. If in (•.•.1) we transpose p,(t,T),

then divide each side of the equation by 8 and pass to the limit,

w e o b t a i n i

pI(t+B,'T÷+8)-p• (•',t)

or

(3.-3l1.) J.+ - (X + ~.(r)p(t,¶)

This is so for j=I,2,...,R-l and similarly from (3.3.9) we get for

=0V

(3.312) - p(t) + If(T)pj(t,T)dT.

These are the differential equations whose solutions will provide the

inter-arrival time distribution of the output counts. First we will

obtain an expression for the probability of attaining state R at

some point in [0,T], PH(t' )dt'. From this we find the probability

density for the waiting time until state R is reached. This isfT
obtained by differentiating pR(t' )dt' with respect to T, sincefo
this can be interpreted as the probability that the waiting time for

reaching state R will not exceed T. The remainder of this discussion

is therefore concerned with obtaining this distribution by developing

its Laplace transform.

Equation (3.3.11), treated as a differential equation in the

variable i, can be solved by taking the Laplace transform with
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respect to the variable t. Label NJ(a, ) the Laplace transform of

ZI pP(t,?) or

£ (3..13) 1vj(S, ) =fOW efst Pi (t,,)dt

SI Now take the Laplace transform of each side of (3.3.11) and (3.3.12) and

-I note that

(3.3.14) 0eSt dp--dt = - p0o(O) + s o(a)0

I with p o(O) = 1, while

(3.3-15) o 0.-t dt =- •j(oGr) + s itj(s,"r) = s nj(sr)

Iwith p0(0,T) =0 for J O.

Hence equation (3.3.11) becomes

(3.3.16) s it(ST) + ai 5T (ýJ 8T

[ and thus by rewriting we get

g(x)dx

(3.3.17) nj(s,,) = aj(sO) e"(s+)T e0

p •or, using (3.3.2)

II (3.3.18) ilj(si) = nj(s,O) e'(S+X)T[l-G(r)]

SSince we are concerned only with the marginal distribution of

pj(t,,•), we integrate over Tr to obtain [setting 1-G(i) =•(T)) and
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using a star, *, to denote the Laplace transform]

(3.3.19) f 0 it(s, T)d, - E3 (8,0) f0 e •(,)djr x (s,0) %*(s+.x)

From equation (3.3.5), we obtain in the limit as is already indicated I
in the discussion following that equation

001
(3.3.20) P (t,o) x f pj- 1 (t,r)dr

and, taking the Laplace transform, si

(3.3.21) Aj(s,o) = x f 1jt (s,'r)dr j

for j = 1,2,...,R. Since transitions from the state S do not

depend on r, we have

(3.3.22) A(s,o) = x Ao(s)

Using (3.3.-19), (3.3.21), and (3.3.22), we obtain

(3.3.23) A, (so) = €• o÷• - J sro(s) •

From (3.2.18), we obtain i

(3.3.24) COf t E(5,T) i(')d'r X E(8,O) f00  e' p('),tr)d¶
fo fo

. t
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Sand using (3.3.1), this becomes

I (3.3.25) f v(,r)() =j(s,O) f ( G'()d

I- ,(s,o) G'* (s+X)

Finally, we take the Laplace transform of (3.3.12).

R -1 00

(3.3.26) -1 +a s v0 (S) A - 0 (S) + i.f ,•,(s,-r)() d'

and substituting the result (3.3.25),

m R-1

(3.i3.27) -1 + S9(s) = -% A (s) + I A ,t(so) GI*(s+X)
I J=l

R-1-- -• 0 (s) + ,t 0(s) G' (s+X) x • (%*(,+x)]Jl '•"•.

I On summing we obtain the result

(3.3.28) -1 + s A-0.(s) = n 0(s) + X n0(s) [IX S+x)]R-1

[ or,

S(3.3.29) ,10(S) 1

s + X-% G,*(S+X) [1-Cx *¢s+xD 7"][ Ll1-.-g*(a+X) j

If we let H(t) denote the probability that a count (that is,

I_ state SR) is attained in the interval (0,T), we have from the

fact that
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or, on differentiating,

(333)H' (T) - pR (T)3

that I

(3.3.32) E[e-StR] - [H' (T)* R(s)I

is the desired Laplace transform of the waiting time distribution

towards which we have been working. For state SR , we also have

(3.3.33) s = AR(so) -s

since the system i.mmediately returns to state So. Hence, using(3.3.21),

(3.3.34) AI(s)) 'Rf l .(s,.r)dr

and substituting from (3.3.19),

(3 .3 .35 ) A (8 ) '- .l (S o ) I* (s+x )

or, iterating this substitution as in (3.3.25),

ii

XR (Q(B+X)R-1K (5
(3-3-36)
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I .e+)us

| t "+

is the Laplace transform of the inter-arrival arrival distribution of

output counts from the general R-fold Laplace transform coincidence

I counter.

For R -2; G(T) - O, for T < T and G(T) = 1 for r >

which is the case treated previously in Chapter 3, section 2 we have

(3.308) Go*(s+)). f 0  e'(s+)• d e`(o+)T 0

[ et 2] 2 1-e' 0_• 3 .3 3e - ( -I -) -) ' - I)
(-)T

which is the result previously derived for this, case by the conditional

probability approach used in that section.

Another' interesting case which is mathematically tractable is that

in which G is a negative exponential distribution, G(i) u l-e"I.

In this case we find

I(3 3 40) Gl*(s+) ) 0f e .(+ X) T 1 6+1.4r dT

and

10-st 2  2 - g4.2

1334) aI(jf +*~~2% j4 O+ ts+ +% b

I4tX0 3(X2+))8+435Xi)s2



CHAPER I

QUAWLNUM FICIENCY OF PHOTOGRAPHIC D1ZCTORS

1. On the Probl1 of Specifying a Measure of Performance

In one sense, the perfect photographic detector is one in which

only a single incident photon is required to make a grain developable.

Consequently, if an average of XT photons is incident per grain J
during the time of exposure, T, and if the Poisson distribution api.

plied, the probability of a grain being made developable is the sum

of the probabilities of 1, 2, 3... photons incident on a grain i.e.,

(4.1.1) H [0,T] = H(%T) = e (XT)e = -e •XJ=l J!

An "imperfect" emulsion, however, can be constructed in at least three

ways.

In the first place, the grains may not be tightly packed. In this

case, even though the flux in photons per grain is XT and a fraction 1
H(XT) of the grains in a tightly packed emulsion could be made develop- -
able, only a fraction Q.H(XT) are actually made developable, where

Q is the ratio of the number of grains present to the number that I
could be packed into the same surface area. If only a single photon

is required for developability, the fractional number of grains made

developable in such a case is

(i4.1.2) Q.H(%T) Q e- - Q(l-e

In the second place, the grains may not be good absorbers, so

that the effective flux per grain is not XT but, say, QMT, where ,

4I4



Qnow denotes the absorption of a grain. This is equim lent to assau-

ing perfect absorption and placing a filter of transmission Q over

the emulsion. Then the number of grains made developable (assuming one

photon per grain required for developability) would be

I(4l.1.) HQ(XT), e -QX (Q~T) .= -'
|Q

However, it is also possible to think of the photographic detector

as being imperfect in the sense that a grain might require R = l/Q

j iphotons to become developable. (In this case we can think of Q as a

measure of the inertia of a grain.) If each grain were so constituted,

I the fraction made developable would be the sum of the probabilities of

R, R + 1, R +,2,... photons incident on a grain, i.e.,

HR(XT) = e~ jX)
JuR

= l e ' X T [ l+ XT + .. .+ (% ) ]-I

J! I Formulas (l4.1.2) - (4.1.4) indicate the three quite different

ways in which a "fractional utilization factor, Q" could be introduced.

In general, an emulsion will be imperfect as a result of all these

reasons. For a combination of the last two reasons we could write

(11.l,5 HR(XT) = QXT (QXT)J

or, even more generally,
I

(4i..1.6) P-i I eC (Q'T)
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In case the emulsion consists of a variety of grains and the fraction

Sof the population requires R1 photons for developability. In

formula (4.1.6),, . represents the fractional area covered by grains

of inertia Ri when all the grains absorb a fraction Q of the in-

cident energy. (Holes are considered as grains with infinity inertia.)

Aside from the fact that "fractional utilization" factor is an

ambiguous notion as shown above, there are other reasons why the old 3
definition of quantum efficiency as a ratio of number of output to

input events (which is linked to the notion of fractional utilization)

is not a good measure of performance.

If every input event gave rise to a single count we should like

to say that the detector has a quantum efficiency of unity. Even if

every input event gave rise to several counts we should still wish to

speak of the device as having unit quantum efficiency, and we should

consider each aggregate of counts produced by one input event as a

single output event. Suppose, however that on the average, only every

other input event is effective in producing output events and that for

each output two counts are registered. The ratio of output to input

counts in one and yet a detector in which every input event produces

an output count may be viewed as superior. It follows that a different

approach to a unique and meaningful definition of quantum efficiency

is called for--one which cannot only be computed theoretically but

can also be measured experimentally. This is accomplished by applying

to photographic detectors the concepts developed in Chapter I.

"4 L -
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I We shall conuider a (simple) photographic detector as,an ensemble

of go..no-go detectors, each of which is capable of responding Just

once immediately following the arrival of the Rth event. Consequently,

" I further arrivals at a detector having already received R "hits" are

wasted, and cannot be transferred to another detector or registered

in the output. The photographic detector is unique in that it can

operate simultaneously on a large set of Poisson processes, namely,

on all those sources in space which are imaged on the face of the

I photographic plate. Also, because of imperfect imaging and scatter

within the emulsion, a Poisson point source is imaged, not on one,

I but on a pet S of detectors (or photographic grains). Thus, in

comparing the intensity of two point sources, the output from 2S

detectors must be compared. An ideal non-photographic ensemble of

S detectors exposed to a Poisson source of intensity X for a time

^X
would provide an estimate X of X with a variance of y , assum-!T

ing the set of S detectors to operate independently of each other on

the same Poisson source.

Ii If we suppose that each photographic detector requires exactly R

hiti to become developable and retains its developability indefinitely,

then we can calculate that the mean number of detectors responding to

an intensity X (per grain per unit time) after an exposure time T

will be

I47
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- S[l-e-XT • k

Now if H is the probability that a detector will respond, and

if S independent experiments are performed, the probability that

exactly k responses are obtained is

(4.2.2) p(k) = (S) Hk (1-H)S-k i

and hence the variance of the number of responses is ]

(4.2.3) aS . S•H(XT)[l-H(XT)]

Since (4.2.1) yields the response function r(XT) of the photo-

graphic detector (known in photographic theory as the characteristic

curye)and (4.2.3) the variance of the output, we can use (1.3.5) to 1
obtain the variance of the asymptotically unbiased estimate of 'XT

r'l(XT), so that

(4.2.4) var(XIM(T))= H(I-H) [d-T)' -2 .i

As indicated earlier, the ratio of this variance to that of the ideal

detector is a measure of the efficiency of the detecting process.

To illustrate the calculation of quantum efficiency with a simple

example, suppose that we have a photographic detector requiring one

photon hit to make each grain developable. If the total radiation on

one grain during the time of exposure has average XT, the fractional

number of grains which will become developable is
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(4.2.5) H(XT) - •s -eT ( -- e).
J-l

I If there are a total of S grains within a given area, we expect

I there to be

(4.2.6) S[H(XT)] - S(l-e" XT

developed grains after exposure and processing. Due to random varia-

tions in the incident events, there will be fluctuations in the number

of developed grains from one area of S grains to the next. The
standard deviation of the number of developed grains is obtained from

the binomial distribution and is IS(l-e'"T)e"T (using 1-e"AT as

I the probability of success). The estimate of X is

(4.2.7) X = H-I(XT) - log(l-H(T))

J and the variance of the estimate is by (1.5.5)

var(X - var(S[H(XT)]) I dSH(VT)]

(4.2.8)

Se ýT(1-e- X)IS'TII'•
"- s2 g 2e 

2 T

Ii whereas the variance of X in the case of a set of S ideal non-

photographic detectors is

(4.2.9) var ) = T'

Thus the quantum efficiency is

1 49
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- (%T, R-1) - T2 0.X

(1-e"T)e"
(.2.o) 

XTe-XT

and this depends on the total expected number of input events XT 1

rather than on the input rate X. We also see that 6 is a monotonically

decreasing function of XT, and that the one photon photographic de-

tector has 100% efficiency only at XT = 0. For given X, this de-

tector becomes increasingly inefficient as T increases. The photo-

graphic type of detector is a saturating device which has infinite

In general the photographic detector requiring R photons for ]

developability has its peak quantum efficiency at about XT = R-I.

This follows from the fact that dH/d(XT) is a Gamma function in XT I
with parameter R-l, and hence its mode is at R-1. It follows that j
if the background radiation is known to have mean value XT, the ideal

photographic detector is the one which requires R = ýXT + 1 photons

for developability rather than one photon. At the value of XT = 1, the

efficiency of the R-photon detector has the form -

( ..2. 11) = B- I e -(R - 1 ) R -1 2 }
A'E R-1i re (R1

Using Stirling's formula for n!

(4.2.12) n. ~ f nn 2 e•n

we obtain
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1 The raxzium value of H(I-H) is .25, so that a lower bound for the

quantum efficiency peak value is

(& 71w P 0.65

independent of the number of photons, R, required for developability.

This is perhaps the most surprising result concerning this class of

radiation detectors.

sible incremental signal for a given radiation background, the corres-

ponding R-photon emulsion must be considered as the ideal photographic

i detector; the efficiency of an actual emulsion relative to this detector

is obtained by dividing the maximum quantum efficiency of the actual

emulsion by the quantum efficiency of the appropriate R-photon photo-

I graphic detector. This yields a somewhat higher value of efficiency

than appears in the literature.

However, even the higher value of efficiency obtained in this

1 manner is not a really fair index of improvability for actual photo-

graphic materials. The reason for this is that the assumption of a

given background radiation is unrealistic. We do not know the strength

of the background radiation. This means that the photographic detector

must have a certain latitude. The latitude we require is a measure of

g our a priori ignorance as to the strength of the radiation background.

All we can do in the face of this ignorance is to make the quantum ef-

ficiency as uniform as possible for the range of background radiation

strengths that we expect to encounter. If, for example, we expect a



range of 1 to 10 photons per grain area for the background radiationj

we might take for our ideal photographic detector a composite of

R - 1,...,8. Such a composite detector made up, say of an equal number

of grains of each type has a more uniform, but lower, quantum efficiency

than a one-photon detector would have. If a still greater latitude is

required, say for a range of XT's from 1 to 100, a uniform quantum

efficiency over this range can be achieved only by using a still greater

range of R's.

If we want to determine the optimum response curve over a given

range, N~T, XT) for uniform. quantum efficiency throughout this1

range, we proceed as follows: Since

(421)d 2 XT ~

and since we require I
(4.2.16) constant X0T < XT < XiT

we obtain 1
1 1 1

(4.2.17) H,(XT) =- (H(XT)[l-H(XT)]))/(XT)• .

This leads to

1 1 1

(4.2.18) H(XT) - sin2 [1 1[(XT) - (X0T) 1)

1 1

with XT < XT < [3t/2 • + (x 0 T) 2 2  for the response curve having the

optimum shape. With X T - 1 and a uniform quantum efficiency of 1%

2
a value X T f t .250 is obtained. The range is thus 1 to 250.
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Conversely, if the range is restricted to the values Xo T a 1, X1, T 100,

the greatest possible uniform quantum efficiency is found to be about

2.5%.2.5 It follows from these considerations that actual emulsions, which

have, at present, a peak quantum efficiency of between 0.5% and 1.0% ,

differ from the attainable optimum by a factor which is certainly less

than 10. The improvability of photographic materials, given the con-

strtaints imposed by pictorial photography, is thus much smaller than

the factor of 100 which was believed possible, and no further dramatic

breakthrough in photographic "speed" should be anticipated.

3. The Photographic Detector with Reciprocity Failure

As in the previous section, we postulate that a photographic

detector consists of an ensemble of go-no-go detectors. Once one

of these detectors has acted (i.e., once a silver halide grain has

become developable), further incident hits are wasted. Reciprocity

failure means that the photographic detector responds not Just to the

total number of photons, XT, incident during the time of exposure,

but reacts differently, depending on whether for XT - constant it is

the time of exposure or the strength of radiation which is large.

There are two types of reciprocity failure; high intensity failure,

which can be attributed to a type of dead time phenomenon as in a

Type I counter, and low intensity failure, which can be thought of as

H due to the finite memory of a coincidence type of counter mechanism.

Diverse explanations of this phenomenon have been given (9) but the

crucial experiments to determine the precise mechanism whereby reciprocity
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failure is produced have not yet been attained. Consequently any model

whose consequences are in reasonable accord with existing experimental

data can provide a step forward.

We assume here that for photons in the visible region there is

not sufficient energy to produce a developable grain. As is well

known, at shorter wave lengths there is enough energy in a particle

to trigger one or more photographic grains, and for such particles

the problem of reciprocity failure does not arise.

For low intensity reciprocity failure, we assume that a photon can I
produce an imbalance in a silver halide crystal which can persist for I
a time T. Another photon incident during this time will cause this

imbalance to cease by producing an atomic silver speck. Such a speck ]

may, or may not, in itself be developable. If it is, we have a two-

photon photographic detector with low intensity reciprocity failure.

If T is infinite, this reduces to the type of photographic detector

discussed in Section 2. It may be necessary to have a larger speck

of silver to produce development than one obtained from two photons.

If we assume that the two photon speck is non-developable but one

twice as large is developable, then two further photon hits within

an interval T are required to produce either another speck or to i
enlarge the one already formed. Since actual emulsions are a mixture

of grains of varying sensitivity, we would have to combine various

models to simulate an actual photographic material. Here we shall

content ourselves with some discussion of the two and four photon

photographic detectors, as even these present considerable difficulty.
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To arrive at the response curve and quantum efficiency of a two

photon photographic detector with low intensity reciprocity failure,.

we should proceed as follows:

I Beginning with the Laplace transform of the inter-arrival time

distribution of the coincidence counter input (3.2.8), we find the

inverse Laplace transform and integrate this transform from zero to

I T. The result, F0 (%,T,¶), indicates the probability of one or more

coincidence events which is the probability of a grain becoming deve-

II lopable during the time of exposure T, that is, the probability that

at least one silver speck is formed in a grain irradiated by an average

of XT photons, (and one such speck is sufficient for developability).

[ If there are S photographic grains in the area under consideration,

the expected number of grains which will contain a developable speck

after exposure time T will then be S.F o(X,T,T). A plot of F (X,T,-r)

versus X or T indicates the average fractional number of grains

which become developable as X or T increases, the other variable

I being held constant. (In photographic technology, when studying reci-

procity failure, it is customary to hold F0 (X,T,,r) (which corresponds

H to the developed optical density)constant and plot for various values

of X or T the value of XT needed to produce a fixed Fo(X,T,r).

Ii Once we have F (XTT) we can obtain the variance in the number

of developed grains from the binomial distribution, that is, the vari-

ance in the number of developable grains can be expected to be

SSFo(X,T,T)-(l-F0 (X,Tr)). Since there are SXT photons expected

during the time of exposure, an ideal detector would estimate X with

variance X/ST so that the efficiency of the photographic detector is
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If instead of two photons it takes four photons for developability,

we must convolve F with itself to obtain the probability of at least3

two output events in the coincidence counter.

The problem of carrying out this procedure arises right at the

start in trying to obtain an explicit closed form for the inverse 3
Laplace transform. To find the inverse transform of the coincidence

counter inter-arrival time 2

= ( , )2 -le-((.+s), 
i

" 1' ) X -(+s }(43.2)I 77 - ---L- e-(+s

one should take a contour integral over the left half plane. (From

the fact that the distribution function is zero for t < 0, we know

that all the poles of 9(s) must have negative real part (9). Hence

we must find the roots of s + X(l-e'(X+s)- )

To find these let

ie
(4.3.3) s = re =r cos e + ir sin e

so that i

(4.3.4) e-r"rs = e"-r cos e -TriSin 9

and I

(4.3.5) e- = cos(rT cos 6) - i sin(rT cos e) "1

so that

(I4.3.6) s + X[1-e"(s+-)'] = 0



IiI

I becomes

(4-3.-7) 1. r coo e +'XX)e-r~r 0 coo (rT c0oo : 0

I and

(4.3.8) II. r sin 0 - Xe' X e-"t Cos 8 sin (rT co e) =0

Squaring and adding these, we obtain

Ei (4.3.9) r = + X[l-e'Xre"Tr cose]

or

(4.3.1o) cos e + 1 ln[l + -

IiSubstituting this result in I above, we obtain after some reduction

(4.3.11) COS[(X + in( _+ ] = --ln-nX kx (l +r )

A sketch of the expressions on either side of this equation reveals the

[ locations of the infinity of roots. Some direct attempts at a solution

by numerical methods indicate that large scale computer programming is

H necessary.

Thus a closed form approximation to the distribution function

Fo(X,T,r) would be helpful. One possibility is to fit a Gamm dis-

tribution, i.e., a density function of the form

S(4.3.12) r(x~u,k) - ue'ux)k-l
(k-l)!

I by fitting the first few moments of this distribution to those obtainable

by differentiating %o(s). Since the first two moments of r(x;uk) are
i 57



and these determine the particular Gamma distribution completely, we

could set I

E07 8=0

and

(4.3.15) E[ ],1) . [ ]7,s

05; = O 8-0 u

If T is large cpo(s) tends to X2/(X+s)2, that is, the Laplace I1

transform of a Gamna distribution with k = 2 and X = u. This is as

it should be, for that corresponds to the waiting time distribution for

the second input event in the case of a Poisson process. For large .1
enough values of T, we are justified in approximating F0 (X,T,T) 1
near the origin by a Gamia distribution with k = 2. (Some trial approx-

imations easily show that this parameter is not very sensitive to I
variations in k.) Thus to a crude approximation we will need only

u and this parameter is found from

(+.3.16) 1 - 1. .

U X X(l-e )

or

2X (1-e" -X)
(4.3.17) u - X

so that we shall take
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1 .21-" )2d
(4.3.18) V•(X-To) ,fo '. 2. .x.• to 2..

I
as response function in the case that two photons within time i can

produce develolability. We shall take

(43.9 F (2)(,T,Tr) - -r I T'
0 fo 2-ee-X)

II
Si4 twice as large a silver speck is required.

Formula (4.3.18) can be integrated to yield

l(4.3.20) FO(X,T,lr) = 1-euT -uT e-uT

which indicates that the response function of the two photon photographic

I detector with low intensity reciprocity failure is identical in shape

I (to this crude approximation) to that of the two photon detector without

reciprocity failure but stretched along the X-axis by the factor V/u.

SI Again to this approximation the efficiency of this detector is related

to that of the two photon simple photographic detector by the relation

(43.1 Lu) 2

where 6(u) is the efficiency of the simple two photon photographic

detector evaluated at the abscissa value at which its response curve

du2has the magnitude F (X,T,T). The term TV arises from the fact

thato 2 d1 2
that 4(u) involves the expression (T ) whereas we need 0•)

fj in the expression for 6(X,T,r).
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H ih intensity reciprocity failure can be handled in much the

lame wy an low intensity reciprocity failure. In this case we

postulate a dead time , T, so that only those photons contribute to

making an R-photon photographic detector respond which arrive at least ii
T units apart. In this case the probability that a grain will become

developable in time T is obtained by calculating the probability of

R or more output events from a Type I counter. Here again we encounter I
the apparent difficulty that as a first step we need the inverse laplace

transform of the R power of the inter-arrival time transform of

the Type I counter

('4.3.,22) (9S] [? e-Ts Iv

which represents the waiting time distribution for the B output

event from a Type I counter. Subsequently we need the integral from

0 to T which is the probability that the Rth event will occur

prior to time T and corresponds to the probability that a grain

exhibiting high intensity reciprocity failure will become developable.

However, in the present case, we can make use of a device that

will also be found to be useful in a problem to be discussed in the

following chapter. We replace T by T' - T - (R-I)r, a contracted

time interval. It is easily shown that the output process from a Type

I counter is again a Poisson Process with parameter X in contracted

time. Hence high intensity reciprocity failure is equivalent, under

the present model, to shortening of the exposure time for an R photon

simple photographic detector by an amount (R-1)r -- the accumulated

deed time arising from the first (R-l) input photons which are
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I incident on a photographic grain. Hence the efficiency of an R-photon

photographic emUlsion with high intensity reciprocity failure and dead

time Id in found from

(4.3,.23) H(XT,Td, 1R) - H(XT',R)

Ia n d u s i n g Hd ( X , )
(4.3.24) •(X,', )r d H(]R'),)[ we get

1d-H (X, T,,rdR) 2
(11.5.25) E(X '�''d',) T H(XT,,rdR) tl-F,,(X,T,TE)] R ' d I

I which becomes

1(41.3.26) ý(X,T,,¶dR) = S.' 4(X,T',R)

as can be seen by multiplying the numerator and denominator of

(4.3.25) by T' = [T-(R-1)'d] and using (4.3.23) and (4.3.24).
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-HAPTER
COMBINATIONS OF COUNTUB ACTING AS DETECTORS

So far we have been entirely concerned with detectors which are

employed to estimate the parameter X of a Poisson type input. Here j
we shall give some indication of what can be accomplished in other 1
situations. First we consider a series arrangement of a dead time and

a simple coincidence counter which is used as a detector for discovering

an event consisting of two pulses with given spacing embedded in a

Poisson process of noise pulses. What is of interest in such a case is

the overall probability of failure, i.e., the probability of not sensing i
the twin signal pulses and the probability of mistaking two noise

pulses for the twin signal pulse. This can arise in several physical

situations, for example, in a radar range determination problem, and

the discussion will proceed from that point of view. The second situa-

tion in this chapter is devoted to a detection situation in which a

dead time and a coincidence counter are used in parallel. This combina-

tion suggests itself in the situation where the Poisson stream to be I
observed consists of events which have a variety of energy levels and 1
it is desired to estimate the intensity of that portion of the stream

whose energy exceeds a given threshold. This situation is the discrete

counter part of a spectrum analyzer.

1. Dead Time and Coincidence Counters in Series (Radar Range

Determination Problem)

A problem which can be solved, at least approximately, by consider-

ing a series combination of dead time and coincidence counters acting on

Sa Poisson stream, is the following.
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A space vehicle approachinzg the moon is require; to fire itt retro

rocket at some predetermined distance from the moon. ý6 sense this

distance, pulse radar is used in the following manner. The radar uses

I two range gates. As soon as a pulse is received in the first gate the

I instrument ceases to respond for a time Td and then fires the retro

rocket provided a signal pulse is received in the second range gate

during the time interval T c following Td * If no pulse is received

in this interval, the first pulse is judged to be spurious and the

I radar reverts to searching for the first range indication. This

system can fail to operate if (a) a spurious pulse occurs just prior

to the time at which the first turn indication would occur, thus im-

I mobilizing and preventing it from being in the proper state to detect

the first range signal and (b) two spurious pulses occur earlier than

I the intended firing time spaced in such a way as to produce a pulse in

both range gates and thus fire the retro rocket too soon. We are

interested in determining the probability of both of these types of

failures [p(a) and p(b)] as a function of the mean time between

noise pulses, IN, and the total time of operation of the radar

system, T.

The probability p(a) is very simply obtained and is just the

probability of a spurious event during the time interval [T-,d, TI.

Since the spurious events will be assumed to arrive in a Poisson

stream with parameter X, the probability of no events during this

time interval is 1-e The probability p(b) is more difficult

to obtain, but an approximate value can be obtained by the following

Iline of reasoning.
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Uie sptem Spscrlbed is equivalent to passing the Poisson stream

first throug a 'Type I counter with dead time -d' then through a

hypothetical time contractor which reduces the total elapsed time by

the amount of dead time M-d experienced due to the number, M, of ]
output counts from the Type I counter which have occurred during the

elapsed time. This results in a new Poisson stream on the interval

"T= T 4-Td with parameter I
(E(MT)

E(T')

This stream is fed into a coincidence counter with coincidence time I

constant ¶c and the probability of one or more coincidences during

a time span T', given that M output pulses are obtained from the

first counter, can then be obtained by integrating the inverse Laplace

transform of the inter-arrival time distribution. We then multiply

this probability by the probability of getting M output pulses from I

the Type I counter and sum over M to obtain the probability p(b).

This procedure is far from simple, however, and an approximation

to p(b) can be obtained by using the expected number of counts from

the Type I counter

(5.1.2) E(M(T)) =

X'dl

and computing the probability of a coincidence for a Poisson process

with parameter X' over the expected time-contracted interval

R(T') - T-E(MT)Td. It is interesting to note that

6(T)
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I
becomes

SI X T

T XT Xd

that is, the output stream from the Type I counter in the contracted

time ititerval T' is a stream with the same parameter as the input

process.

Furthermore, this stream is a Poisson stream since the waiting

[ Itime distribution from the termination of dead-time (which corresponds,

in contracted time, to the arrival of an input event) to the next input

event is a negative exponential distribution.

[ INow the expected number of counts E(M') in a coincidence counter

(5.1.5)over a time span T' ise

I 2-e c
(5--5 LP' •l-(1- X)]

which for XT <<1 becomes_ 2-e__

(5.1.6) ECM(T')J = TI [-(1-Xd 2 T' 2
2- (l-XT) )

Let PT (r) denote the probability of exactly r coincidences

in the time T'. Since the expected number of coincidences is

S(5.1.7) E(M(T')- rPT,(r)
rO

Ii and in the present situation E{M(T')) << 1 we may make the further

approximation T,-(r) - 0 for r > 2 so that
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-(5.1.8) I(M(T')) - - PT,(r)
r=1

The expression on the right is p(b), the probability of one or more

of the kind of coincidences which cause premature firing. For this

approximation, therefore, we have 3
(5.1.9) p(b) - X 2 TcT

As an example, let X - 10-2 counts per second and T = 100 seconds,
Ifd = Tc = 0.5 seconds then

10xlO" +
(5.1.10) E[]-5x10 3+i

hence E(T') = T-E[M)i d- T (note that without the coincidence counter

we would expect a noise pulse and hence premature firing.) Since j
E(M(T')J = r T = 5xlO-3 , the probability of an early firing is

c "Xkd

only about 1/2 percent, and since p(a) = 1-e = 5xlO the over-

all probability of malfunction due to the incident Foisson noise is

p(a) + p(b) - .01.

2. Coincidence and Dead Time Counters in Parallel - bier.r Detection

It was remarked earlier that radiation can be considered as made

up of discrete photons and that differences in the frequency or wave-

length of the radiation can be associated with differences in the

energy which the photons may have. In some applications a detector is I
required to measure not only the total number of photons in a stream

but also the fraction having a given energy level. The continuous I
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I analog of this type of a detector would be a spectrum analyzer which

SI measures the relative power in a narrow band of frequencies.

Here we shall confine ourselves to a Poisson stream in which the

I photons can have two energy levels E and R2, We shall further

assume that the differences between these types of photons manifests

itself in their ability to produce electrons in some counter device;

the lower energy photons (E1 ) being able to dislodge only one elec-'

tron while the higher energy photons are capable of dislodging at least

I two electrons. The counters, whether dead time or coincidence time,

are conceived of as operating on the electron stream produced by the

photons. We are interested in observing both the intensity of the

stream and the fractional intensity of the high energy radiations.

Assuming that all the electrons produced by a photon are generated

within a time T after the occurrence of the photon we can proceed as

follows:

folwA type I dead time counter with time constant r is used to observe

the total intensity, X = Xi + X2' of the overall Poisson stream. With

this choice of time constant, the multiple events produced by the highly

energetic photons will be reduced to simple counts and the formulas of
Chapter II section 2 can be used to determine the efficiency as far as
the estimation of X is concerned.

In addition, a simple coincidence counter is introduced into the

stream, with coincidence time constant T. This counter will count the

high energy photons (one count per high energy photon since the electrons

are all produced within a short time T of the occurrence of the photon)

H and will also register a count when two low energy photons occur within

r time units. 67



Let nl(T) and n2 (T) denote the number of low and high energy

photons occurring during an observation time T. An ideal device would

in this case, produce output counts m* which, for the overall X-detector
would be =nl n 2 and for the high energy, or X2 -detecto•, m• u n2 . -

The non-ideal counts described above would yield outputs md and mc

related to those by

(5.2.1) md < md - n, + n2. 2

and

(5.2.2) m c

Letting V*(T) denote the ideal variance of the estimate of

and V(T) denote the variance of the estimate obtained from the combina-

tion of dead time and coincidence time co,'nters, we can, as in the case 1
of the photographic detector, define a measure of detector efficiency

by

(5.2.3) E=v*(T)Iv(T).

The variance of the ideal estimate of Xl+ can be obtained

from the distributions of the ideal estimates of X2 and X + X2.

We have

(5.2.4) p(S2  = . ) e r2 (k 
!)

and

X I -)+%2)T (X1+%2 )r+s
(5.2.5) r( ÷ e 6

68



I

I or since the two kinds of Poisson events are assumed to be independent

-X 2 T• "2(%2)r "XT (X I )'
(5.2.6) p(% . E + -" ) e -r-T-, e "T-

2 T Il' 2 T

I A
"k2

The distribution of the ratio t = ,- is consequently

P(- = PX -(•2= kr) P(XM ks)

II (5.2.7)

.( X 2T)(X 2T)kr "-(1T) (X1 T)ks
e -r•T e

S k=l k)

From this formula we obtain the variance of the ideal estimate V*(T)

by means of

2 00 -(X 2T) (X2_)____X)(X1T)kv*(T) = ---•) e e ("FT) e T ".
Sr=l s-i k=l T k

(5.2.8)

aI -X2T (X2T)rk (X1,T) (XT)ks 2
er~ s(k-i e (ks)!

We have not yet specified how the actual estimate of X2/Xl+>2

is to be obtained much less what its variance will be.

To obtain an estimate of '2 once we have obtained an estimate

of X = XI + X2 we can proceed as follows:

IIWe know that the expected number of counts from the coincidence

counter will be

] (5.2.9) E(mc ) E(na} + f(X-X2 ,T)
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viiore, using J

(5.2.10) f(%-(X2,T) - 2)Tl.e

2-e_ 2

Using the observed number of counts m. in place of E(mc}, X2 T in

place of E[n 2 ) and I in place of X we obtain an expression

( .1)�(-$A2)TA-e

(5.2.11) m = X 2T + -(A

2-e

which can be solved for the estimate )2 . Hence also we obtain an
A2 A%

estimate for the relative, intensity X 2 / , since ý was obtained

by (2.2.7).

In principle we could then obtain the variance of this estimate and

the efficiency of this energy detector. The character of the expressions

makes it clear that this involves extensive numerical work and perhaps

Monte Carlo simulation.

In principle such a combination of counters can be used as the dis-

crete analog of a spectrum analyzer. Where more than two energy levels

are involved the coincidence counter would need to be "tuned" so that

only those photons with an energy in excess of a given threshold will

produce more than one electron. By varying this threshold, E, the

proportion of photons having energy in excess of E could then be

observed.

It should be noted that photographic detectors have, to some extent,

the characteristics described above. High energy photons, for example

X-rays, produce one or more developable grains, since they release a
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I number of electrons in passing through a photographic emulsion. Low

energy photons contribute to developability but are required in greater

numbers and over i limited time span in order to produce a developable

grain.
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